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valuable because they extend into fairly high Reynolds number (1.5x106) and
Keulegan-Carpenter number (100}, with g (= R/K) values up to 8370. Sarpkaya's
work also approximately simulated the orbital motion of waves on a vertical
cylinder by sliding the test cylinder, along its axis, into and out of the
water tunnel test section, with varying amplitude, synchronized with the water
motion period (15}.

Wave flow on vertical cylinders has significant differences from the
oscillatory flow in a water tunnel. First, the water surface fluctuates on
the cylinder between the trough and the crest. There is considerable run-up
on the flow side of the cylinder (be it at the crest or the trough of the
wave) and depression on the lee side, as shown in Fig. 1. The run-up and
depression influences the total forces on the cylinder in a way that has not
yet been quantified in the open literature. In addition, the wave flow kine-
matics decay with depth for all but shallow water waves. Even in carefully
controlled laboratory waves with long crests, this attenuation with depth
creates unknown differences in the vortex shedding characteristics around
vertical cylinders, which probably change with depth. For such waves, one
should expect more scatter in laboratory results than with U-tube experiments.

Of course, in the ocean one should expect even more variation of condi-
tions (wide scatter in the results of measurements) because of a greater
degree of randomness of the wave heights and periods, various degrees of
short-crestedness in the waves, influences from the proximity of other struc-
tural members, and varying degrees of surface roughness because of bio-
fouling. In fact, considerably more scatter and uncertainty is displayed for
the results reported on in (17) than displayed from the tTaboratory data

reported on here. Short-crestedness may also be important because of the



influence of the wake encounter effect (3). However, controlled laboratory
results are useful for gaining basic knowledge on the processes of fluid
mechanics. In addition, experiments in large, controlled laboratory waves can
provide transition conditions between the highly idealized U-tube experiments
and the design conditions of concern in the field.

The experimental data herein provide Reynolds numbers up to 7x10° in
steady flow and 3.1x10% in periodic waves. The Keulegan-Carpenter number
ranges up to maximum values of about 27 in waves, and the maximum values of B
are about 40,000, Some 1976 oscillatory cyliinder data were also reexamined
wherein the maximum Reynolds number was 7x105, the maximum Keulegan-Carpenter
number was 63, and the maximum g was about 12,000. In the field, under maxi-
mum design conditions, one would expect Reynolds numbers in the range of from
106 to 2x107, with Keulegan-Carpenter numbers approximately in the range of
from 80 to 240. The associated g values would range from about 12,000 to
80,000. Thus, the work reported herein, which was performed in the Wave
Research Laboratory at Oregon State University (OSU), provides information on
physical events that are transitional in scale and in fluid flow character
between the U-tube experiments of Sarpkaya and the actual events in the ocean,
some of which were reported by Heideman, et al., (3).

When reviewing the literature one must be careful to place the various
studies into perspective. It is well known that Cm ijs a function of both R
and K when g < 6000, but that it is approximately equal to 2.0 for all K, when
g > 6000. On the other hand, Cd seems to vary somewhat with K even at
g8 = 8370, the limiting value shown in (14). It is important to combine high
K, R, and g values to approach prototype conditions in order to provide best

values of Cq4 and Cp for design considerations. Even the field study reported



in (17) yielded maximum K values only on the order of 30. (It is difficult to
estimate K from horizontal velocities in that publication, although maximum K
values from vertical velocities were at about 15.) The maximum R was about
5.7x105, yielding maximum 8 values of about 19,000. The laboratory experi-
ments in (16) had maximum K values of about 24, but R was not reported
a]though g8 = 200 was alluded to, but not clearly identified as pertaining to
that work. The tests in (1) covered K values up to 40 and again R values were
not reported, although they must have been lTow because the largest cylinder
diameter was 3 inches and the largest wave period was 3.5 s.

The force-phase method reported herein has promise of reducing some of
the scatter in Cd and Cm by means of a suggested alternative method of data
reduction and analysis. At least the major source of the scatter is identi-
fied to be the shedding of vortices and how they influence the phase between
the force measurement and the ambient velocity. Some changes in the analysis
were conceived by observing the relative phases in time between the water
profile or velocity measurements (which are theoretically in phase), the
computed acceleration, and the force measurement. (Details of these experi-
ments will be given later.) An example where the force is nearly in phase
with the accleration is shown in Fig. 2. A case where the force is more
nearly in phase with the velocity is shown in Fig. 3. These figures support
the idea that if K is small, the inertia force dominates (or, the force is
more nearly in phase with the acceleration). If K is larger and the cylinder
is rough, then the drag force should dominate (or, the force is more nearly in
phase with the velocity).

The phases to the maximum force and maximum acceleration in the general

vicinity of the wave crest are shown in the figures. A crest-to-crest wave



was chosen for analysis instead of a trough-to-trough wave because the crests
are more clearly definable for the larger and longer waves. It turned out
that the three phases to the maximum values, ¢,, ¢, and ¢¢, (velocity, accel-
eration, force) are closely grouped near the right-hand crest for the waves so
defined. It also turned out that the local force was much more influenced by
the acceleration term than originally anticipated. In fact, in order to get a
record that was more heavily influenced by the velocity term for illustration,
it was necessary to use a record for a sand-roughened cylinder, as shown in
Fig. 3, in addition to having K much larger than in Fig. 2. Even so, the
maximum force is still considerably influenced by the wave accelerations, as
shown in the figure. Figure 3 also shows that the "measured" acceleration
phase is considerably different than the acceleration phase determined from
stream function, ¢¢a’ or linear wave theories, ¢ ,, 2 condition that will be
discussed in more detail later.

It would thus appear to be more direct to examine the relationship of the
phase of the force with respect to the ambient velocity and acceleration in
determining if conditions are drag or inertia dominant. An early paper to
this effect was published (13) which briefly explains the basic ideas
involved. It was shown that there may be less scatter in the data when plot-
ting the maximum force coefficient and the phase shift than when plotting Cg4

and Cm.

Scope

The major purpose of this paper is to make a systematic review of a
force-phase method for determining the forces on vertical smooth cylinders
from periodic waves. Data from experiments on 8.625-inch and 12.75-inch diam-

eter smooth aluminum cylinders will be analyzed.



ANALYSTS

Maximum Force Coefficient, Cu

The maximum force coefficient, Cu’ is defined as

. Fu
c = (2)
2
o %—DLpuu

where Fu is the maximum force on a cylinder in a wave cycle, L is the Tength
of the cylinder over which the force is considered to act, and u, is the
maximum horizontal yelocity within the cycle. (In this paper the subscript,
u, will be used to indicate maximum values.) The maximum force can be con-
sidered near the crest or near the trough of a wave. An idealized record is

presented in Fig. 4 as an illustration of several aspects of this analysis.

Phase Shift of the Force,ﬂ&

The phase shift can be defined in different ways. Since the maximum
force is of prime importance for engineering, the phase shift to the force
wcrest" in Fig. 4, ¢¢ will receive most of the consideration here. The same
holds for the phase of the acceleration crest, ¢5. It is convenient to define

two normalized phases for the force crest as

~ ¢
¢ =97 (3)
and
~ %
b = T (4)
¢a

wherein, if ¥ » 1, the force is dominated by the inertia effects (or, it is in

phase with the ambient acceleration). Conversely, if § > 0, the force is



dominated by the drag effects (or, it is in phase with the ambient velocity
field). The phases $ and § are defined separately because it is sometimes
useful to obtain ¢¢ easily and directly from a piot of 5, where 0 < $ < 1. In
Eq. (7) ¢, can be from the “measured" acceleration, or the theoretical values
from the linear or stream function theories. The "measured" value is rarely
equal to the stream function value and it is nearly always smaller than the
linear value. Usually the value from the stream function theory was used for
reasons explained later.

There is at least a passing interest in the conditions at the wave

trough, so the relative phase there is defined as
5= of (5)

For a visual determination of the phases, it can be sometimes more con-
venient to work to the upcrossings and downcrossings, in which case the rela-

tive, normalized phase is defined as

O, - 6
- f
ar
6, - ©
3=_f U
@-e_e- (7)
a u ‘

Some results will be presented that are based on averaging the phase at the
upcrossings with the phase at the downcrossings.

Another, more computer-oriented method of determining the phase is by
cross-correlation analysis, which itself can be computed by different
methods. First, the cross-correlation, Cj,, between any two signals (in this

case the velocity, u, and the force, F, can be computed from



CR].Z (t) = —{o 9 (t) 99 (t + 1) dt (8)

where g; is the velocity record and g, is the force record. We seek the phase
(or time) at which CRyp is maximum. In practice, the approximate t for Fu is
known a priori. Then, t is simply increased incrementally, calculating CR for
each value, until CRu is reached, by evidence of a reduction in CR. Experi-
ments with other methods, such as finding the t at which 3CR/37 = g, and
spectral methods, have required more computer time and cost. The value of 1
at which CR is maximum, nondimensionalized by the wave period, and multiplied

by 360°, is the force phase, or
- T
be = 360 7 . (9)

The phase can be also determined by either of two spectral methods. The
cross-correlation and certain spectral products are Fourier transform pairs.

Specifically, the spectral product, E12 (f), is defined as
*
Eyp (F) =S, (f) Sy (f) (10)

where

s (F) = [ g, (©) e d2mft gy, n=1, 2 (11)
and * indicates the complex conjugate. Then CRy, (1) and Eyp (f) are Fourier
transform pairs. However, obtaining the Fourier transform of Eq. (10) (which

yields CR for all values of t) usually requires more computer time than a few

direct computations of Eq. (8). An alternative procedure is to recognize that



where CO is usually termed the cospectrum and Q is the quadrature spectrum,

and

19 ()
¢12 (f) = tan W . (13)

Determining ¢ from Eq. (13) also requires more computational time than the

direct method of Eq. (8) if the waves are nearly periodic.

Drag and Inertia Coefficients From Cu and $

We now assume that the horizontal velocity at the center position of the

force transducer would be (in the absence of the cylinder)

[
1]

14
u, €ose (14)

where © = ot and w = 2n/T, with T the wave period. Equation (1) can be non-
dimensionalized by dividing both sides by Dpu§/2, substituting Eq. (14), and

defining the Keulegan-Carpenter number as K = uuT/D, so that

. 2
- o .
F =C, coso|cose| ¢ C, sino . (15)

It is sometimes useful to approximate Eq. (15) with a linear form by either
expanding the cose|cose| in a Fourier series and retaining only the first
term, or by utilizing the Lorentz linearization principle of equivalent
work. In either case the result is

2

F=.85C, coso - —cC_ sino . (16)

d

The approximate maximum value of E, which is actually Cu from Eq. (2), is

2
_ 2 _m 2.1/2
c, = [(:85C° + (k)] (17)

10



and the phase between the wave crest (or uu) and the maximum force is

T|’2C

-1 m
o = tan (- gExRC,) - (18)
Equations (17) and (18) are almost virtually the same as Eqs. 3 and 4 (which
were not derived) in Ref. (17), except for the .85 factor, which is necessary
in the linearization procedure and was omitted in Ref. (17). Combining Eqs.

(17) and (18) yields

B85KC

- d -
Cm = WZ tan ( ¢f) . (19)

By substitution into Eq. (17), and with the identity, cose = 1/(1 + tanze)l/z,

we obtain

Cd = 1.176 Cu COSpe - (20)

Equation (19) can now be further simplified to

) K Cu sin(- ¢f)

Cm - 2 . (21)
L

Equations (17), (20), and (21) are useful for making a rough estimate of
the limits of drag or inertia dominance relative to Eq. (1). A more accurate
and useful estimate of Cd and C, will be derived later where a nonlinear form
similar to Eq. (1) is retained.

Now consider the phase at which either the drag or inertia term dominates
the maximum force coefficient, Cu’ in Eq. (17). This is only a rough approxi-
mation because there is no universally accepted value for the concept "domina-
tion'. For illustration, it is assumed that C, is influenced only 4% by the

inertia term. Then

11



2¢

Tt m (24172
. 85 Cy [1+ LT%W) ] (22)

(qp]
1]

i

.85 Cd (1.04)

from which, in conjunction with Eq. (18),

o = - 16° . (23)
Likewise, if Cu is to be influenced only 4% by the drag term, then

o = 74° . (24)

The Morison equation need not be linearized in order to obtain Cd and C
as functions of Cu and dge Consider that the maximum force occurs near the
leading surface of the wave crest, some time after the maximum acceleration
and before the maximum velocity, as shown in Fig. 4. In that region

2
~ . 2 —"— ,
F =C4 cos® - g C sine (25)

and the maximum force will occur when

dﬁ _ 2 . ﬂz =0 6

rr i Cd cosesino - K_'Cm COsSO = . (26)
or,

df "2 Cm

46 = - cose (2 Cqsine + —y ] =0 (27)

Equation (27) must hold for all time, and at the force peak, © = ¢¢, SO

b = sin " (-5 - (28)

12



By substitution into Eq. (25), and letting cosze =1 - sinze,
f =C =cC, (1-sin? )-E-z-c sin (29)
b e vd 0¢) =k g STNOf o
or,
e, whC  wC, 20y
c, =t - o d)]‘ K (‘2ch)zc (30)
or,
2
C, = Cq [1 -4+ 24 (31)
or,
Cg = C (1 + 44 (32)
where
ﬁsz
y = sin (‘¢f)=2KCd' (33)
From Eq. (33)
2KCdY
C = —p— (34)
m
and by substituting Eq. (32),
ZKCu Y
cC = . (35)
m 1r2 1+ Y2

If ¢ and Cu are determined experimentally, then C4 and C, can be estimated
from Eqs. (32) and (35). The coefficient Cu is relatively independent of
¢f. However, ¢ can be influenced markedly by vortex shedding and the

vagaries of the ambient flow. Laboratory data show that plots of Cu vs. K

have relatively little scatter but the opposite is true for plots of ¢..

13



Since both Cd and Cm are influenced by ¢+, experimental values of them do have

scatter.

Steady Tow Drag Coefficient

It is of interest to consider wave conditions with very large K because
such values can exist for prototype (full scale) conditions in design sea
state conditions. At some large K, nearly steady-state flow conditions should
exist. In the OSU laboratory the maximum local K that can be obtained for the
8.625-inch diameter cylinder was about 26. However, steady-state towing was
accomplished with a tow carriage, up to Reynolds number, R, of about
1.7x105. The drag coefficients, C,e, derived from such tests are defined as

CdS = %;?;7517 (36)
where F 4 is the steady-state average drag force per unit of cylinder length

and U is the steady flow velocity past the cylinder. The Reynolds number is

_Ub
R - (37)

where v is the kinematic viscosity of the fluid.

14



EXPERIMENTS

Most of the data presented herein are from references (3,11). However,
limited results from the experiments reported in (18) will also be shown. A
detailed review of the experiments can be found in those references and only a
very brief review will be given here to acquaint the reader with the general

aspects of the work.

Equipment
The Wave Research Laboratory (WRL) at OSU is a flume 12 feet wide, 15

feet deep (of which 3.5 feet is freeboard), and 340 feet long. The test
length that is relatively free of the evanescent effects from boundary condi-
tions is about 126 feet long. A longitudinal section of the facility is shown
in Fig. 5. Horizontal cylinders were towed from a carriage as indicated in
Fig. 6 for determining the steady-state drag coefficient, Cds’ of the 8.625-
inch diameter cylinders. Periodic waves were produced with periods ranging
from 2.0 s to 6.0 s. The wave heights (trough-to-crest) were limited by
incipient breaking up to a period of 2.6 s, where the wave height was about 5
feet. For periods greater than 2.6 s the maximum wave heights were limited by
either the still water free board (3.5 feet) or the available energy from the
wave generator (150 H.P.). The maximum height for the 6.0 s waves was 3
feet. Wave spectra were also produced, but the results therefrom will not be
reported on herein. More details of the WRL and wave generation capabilities
and characteristics can be found in (4,8,9).

The vertical 12.75-inch smooth aluminum cylinder (5) had a 12-inch long
local force transducer that responded to the wave forces in a measurable way

that was completely independent from the deflections, strains, and stresses
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within the total cylinder structure. The vertical cylinder spanned smoothly
from the wave flume floor to a beam 15 feet overhead, with no intermediate
supports. The total forces and local pressures were also measured, but they
will not be reported on here.

The vertical 8.625-inch diameter aluminum cylinder (11,12) also spanned
from the wave flume floor to the overhead beam 15 feet above. However, it was
necessary to provide intermediate supports at about 3.13 feet and 12.50 feet
above the floor by means of small diameter, high strength guys that extended
from the cylinder to the wave flume walls. The center of the local force
transducer was at the same level as that for the 12.75-inch cylinder (3.7 feet
below still water surface). However, the local forces were measured on a 2-
foot long section. The transducer was constructed in such a way (11) that
deflections of the support column could introduce a 13% influence on the
measurements of local force in the in-line forces. (The transverse forces
were influenced only 4%.) However, this influence was accurately quantified
during calibrations by loading the entire cylinder as well as the local force
transducer. (Similar calibration procedures proved that the local force
readings were independent of support column strains for the 12.75-inch cylin-
der.) Experiments with this equipment were also performed on a sand-roughened
cylinder that had a relative roughness, ¢/D, of .023, where ¢ is the average
maximum height of the sand grains, which were first determined with a sieve
analysis, and later corroborated with circumferential measurements. Some of
these results will be presented here to illustrate analysis techniques.

The water surface profile was measured with a sonic profiler embedded in
the beam that provided the top support for the cylinders. The water veloc-

ities were measured for each cylinder with Marsh McBirney current meters
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placed midway between the vertical cylinder and the wave flume walls, and at
the same elevation as the center of the local force transducers (3.7 feet

below the still water surface}.

Measurements and Recording

Most measurement signals were recorded, filtered and unfiltered, wherein
the filter was a Rockland 2-pole, low-pass filter with the cutoff frequency
set at 8 Hz. The wave profiler was not filtered because of spurious results
that would result from sharp 'spikes' or ‘dropouts' that are inherent with
sonic profilers and steep waves. Such records were filtered digitally. The
current meter data were filtered in their own conditioning circuitry prior to
the Rockland filter. Data processing included a calculation of the proper
phase of each signal with the individual transfer functions so that the final
smoothed signals were all properly phased with the water surface profile (3).

Signals were digitized at 256 increments per wave period. After complete
processing, the data were reduced to 32 increments per wave, from which Cj,
Cn» and other quantities, such as plotted information, were calculated. This
information was stored on magnetic tape. For the 12.75-inch cylinder, data
from 10 waves were recorded for each run, from which 7 peak-to-peak waves were
defined. For most of the 8.625-inch diameter cylinder runs, 4 waves were
recorded, from which 3 peak-to-peak waves were defined. Extra runs were made
for the 12.75-inch diameter cylinder. Most of the processing for those runs
was done on 3 or 4 waves from the 10 waves recorded in order to save data
reduction costs.

1t will be of interest to consider the results of some experiments made
with a 12.75-inch diameter smooth cylinder (18) wherein the cylinder was

oscillated horizontally in otherwise still water at a distance of 6 diameters

17



from the smooth bottom boundary and the still water surface. The apparatus
was not constructed as well as for the vertical cylinders, so the results have
considerable scatter. However, calibrations were carefully done and the
central tendencies of the data trends are of considerable interest because
Reynolds number of up to 7x10° were achieved, as well as Keulegan-Carpenter

numbers up to 63.
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DATA ANALYSIS AND RESULTS

Water Kinematics and Dynamics

Although water velocities can be measured with current meters, it is not
possible to measure the accelerations directly. They were, therefore, cal-
culated from the velocity measurements. Basically, the time derivative of the
velocity measurements must be made to obtain the accelerations. The noise in
the velocity measurements is then amplified for the accelerations. Calculat-
ing the derivative in the time domain yielded unacceptable results, even after
time-domain filtering and inverse phase shifting. However, a frequency-domain
procedure was developed by performing a Fourier transform of the velocity
measurement, applying a transfer function based on linear wave theory to
obtain the acceleration spectrum, setting to zero the energies above a fre-
quency of 1.0 Hz, and performing the inverse Fourier transform to obtain the
acceleration in the time domain. The resulting acceleration is smoothed of
high frequencies and is theoretically properly phased with the velocities.

The procedure is reviewed in detail in (5). However, the author thinks there
are inaccuracies in the magnitude and phase of the accelerations of an unknown
amount due to innate inaccuracies in the velocity measurements. There is also
scatter in the phase of the accelerations so determined for a reason that is
as yet unknown.

In this section the kinematics and dynamics of the water particles will
be reviewed. A brief review of the rms errors between the measured kinematics
and the stream function theory appears in (10). Generally, the values ranged
from .10 to .28. This is a rigorous criterion because the rms error, E, is

based on the velocity vector. That is,
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N
rms E = {N-g [(u * W - )2].}1/2 !/ Uim (38)

VMR

where the subscript, m, is the measured value, and y is the vaiue from stream
function theory for the horizontal velocity, u, and the vertical velocity,

w. Three somewhat typical results from kinematic measurements appear in Figs.
7, 8, and 9.

The phase shift of the acceleration, ¢, (see Fig. 4) can be predicted
from stream function theory. Values of ¢, within the range of these experi-
ments are plotted as the solid lines in Fig. 10, as a function of the wave
height, H, and period, T. In addition, values were computed from the velocity
measurements for the runs for the 12.75-inch cylinder. Each run had one value
for each of the 7 waves measured. The average values of these for each run
are also plotted in Fig. 10.  The results show only rough agreement. It is
concluded that errors in velocity measurements, even though they may be small,
are amplifed considerably when accelerations are calculated therefrom. This
is particularly true for the phase of the positive peak of the accelera-
tions. Therefore, for the remainder of the analyses, it was decided to rely
on the phase of the accelerations as determined from stream function theory.

In a closed system wave flume there is mass transport from the wave
generator toward the beach in the general region above the wave troughs. This
must be balanced by a return flow from the beach toward the wave generator,
possibly at some depths below the troughs. The return flow was calculated by
Kim (6) using Stokes fifth order wave theory and by assuming the return flow
is uniform from the bottom of the flume up to the still water level. The
return flow was also calculated from the kinematics measurements and the
averages from a limited set of data are shown in Fig. 11. [They are also

shown in a different way in (10).]
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A broad agreement can be detected between measurements and theory. There
is still considerable scatter, which is due to measurement errors and the fact
that u is probably a function of time, whereas the theory is based on steady-
state conditions. For the analyses herein J was determined from Fig. 11 and
vectorially added to u from the stream function theory for analytical purposes

here needed.

Phase Shift, &, Normalized With 90°

It is desired to compare the different methods for determining 5. This
was done for a cylinder uniformly coated with sand, such that the relative
roughness, ¢/D, was .023. The cylinder is designated as the SRC.02 and the
phase was determined by the peak-to-peak method, the crossings method (average
of the zero upcrossings and zero downcrossings), and the cross-correlation
method. In each case the normalizing value used was 90°. This was done in an
early phase of this work and was reported in (13). It is repeated here for
completeness in order to compare the results of the different methods used on
one cylinder. The SRC.02 (Sand Roughened Cylinder, k/D = .023) was also
selected for this comparison because the results should be more influenced by
the velocity (drag effects) than for the smooth cylinders.

These results for the SRC.02 are shown in Fig. 12. They show fairly
tight plots for the zero crossings method and the cross-correlation method.
The peak-to-peak method has more scatter, particularly at the higher K
values. Figure 12 shows clearly that the 5 values are lowest for the peak-to-
peak method, highest for the zero crossings method, and in-between for the
cross-correlation method. These relationships are to be expected since veloc-
ities are low at the crossings, highest in the crest region, and averaged out

for the cross-correlation method. Since the crest region of the wave is of
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most interest and since the maximum force coefficient is determined from the
maximum value of the force and the maximum velocity, the peak-to-peak method
will be emphasized in the remaining part of this paper.

The 12.75-inch cylinder will henceforth be designated as the VSMC12
(Vertical Smooth Cylinder) and the 8.625-inch cylinder as the VSMC8. Selected
runs for the VSMC12 were analyzed for s by using the cross-correlation and
cross-spectrum analyses. The results are shown in Fig. 13. In fact, for a
given K, the two methods were practically equal, though not identical. The
data points were purposefully displaced in order to show for which points both
analyses were made. Figure 14 shows the results for the zero crossings
method. The phase, ¢s, is evidently smoothly changing from 1.0 to smaller
values at a K of 15.

The results from the peak-to-peak method of finding $ are shown in Fig.
15. The dashed line was constructed first for the VSMCl2 alone, then for the
VSMC8. The two curves were close, so an average was struck, which is repre-
sented by the dashed 1ine up to about K = 20. The remainder of the line was
drawn, taking into account the scatter from the horizontal 12.75-inch diameter

cylinder (HSMC12). Obviously, more data are needed in the range 20 < K < 200.

Maximum Force Coefficient

The maximum force coefficient, Cu’ for the VSMC12 is shown in Fig. 16
wherein the value of u, is from the measured kinematics. Figure 17 shows the
same information using u, as determined from the stream function theory.

There is a little less scatter, particularly for K < 10, for the data based on
stream function kinematics than for those based on the measured kinematics.
Hence, it was decided to show most of the remaining data based on stream

function kinematics wherever possible. Actually, even the seemingly small

22



scatter in Fig. 17 can be reduced further, as shown, approximately according
to 8. The A line roughly represents the data for the larger 8 values and the
B line roughly represents the data for the smaller g values. It was seen in
(13) that Cu vs. K data can be organized quite well for very rough cylinders,
and it was assumed at that time that they collapsed to a single line for
smooth cylinders. However, the carefully plotted information in Fig. 17 shows
that smooth cylinder data may be further organized according to g even for the
higher values of Bg.

It is also of interest to note that for small K Eq. (25) can be expressed

accurately with only the second term. Then, taking

Fu = Cu = —-R-—— (39)

it can be seen that the slope of the plot in Fig. 17 should be -1, which is
nearly the case.

Figure 18 is the similar plot for the VSMC8. The g breakdown is indi-
cated and it appears to be close to that for Fig. 17. That is, the A and B
lines fall nearly at the same positions.

However, Cu for higher values of K are needed to show how Cu varies for
all values, knowing that it should approach C4. as K gets large, according to
Eq. (31). Some approximate data were obtained from the experiment records
that were accomplished for (18). Plots for the VSMC12, VSMC8, and the HSMC12
are summarized in Fig. 19. From these data it seems to be reasonable to use
the curves as drawn to approximate the relation of Cu to K for all values of
K. Of course, these are tentative curves that need to be verified with addi-
tional data at high K values from any valid available source. The value of

Cds in the figures is the average of several tow tests made with the smooth
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aluminum 8.625-inch diameter cylinders up to R values of 7x10°. The values
ranged between .4 and .6.

It is of interest to note that it may be possible, as indicated in Fig.

19, that Cu can be determined at laboratory scales for all values of K if the
high values are determined from C4. and the low values are up to high enough K
so that Cu = Cds' This also implies for all values of R! It will be seen

shortly that the same is not true for » or 3.

Phase Shift, §, Normalized With ¢,

Attention is now directed toward § to see for what values of K the force
record is nearly in phase with the velocity record (drag-dependent). Figure
10 shows that as K increases (i.e., as H and/or T increase), ¢, gets
smaller. It turns out that § from Eq. (4) remains quite high because although
the maximum force becomes more closely in phase with u, the phase of 0 also
moves toward that of u, so that 3 reduces only slowly, as shown in Fig. 20.
Since ¢4 is dependent on measured values of H and T, there is considerably
more scatter in 3. Thus, the forces measured were heavily dominated by the

acceleration effects up to K values even as high as 23.

Drag and Inertia Coefficients

The normalized phase, $, is plotted for the VSMC12, VSMC8, and the HSMC12
in Fig. 15. This figure and Fig. 19, along with Eqs. (32) and (35), were used
to obtain values of C4 and C, that would yield best approximations of the
magnitude of the maximum force.

The values of Cd and Cm are shown in Fig. 21, where the smooth curves are
from Eqs. (32), (33), and (35), using the smooth curve values of C, and of

determined from Figs. 15 and 19. The plotted points in Fig. 21 are the values
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of Cq and Ci determined from the respective cylinders, as calculated with
least squares methods (5) and averaged over a minimum of three waves in any
run, and up to seven in some.

It is possible that the scatter in data values of Cy and Cp, in Fig. 21
can be further organized according to broad ranges of R and 8. Actually, data
indicate Cu can be organized according to g, when plotted as a function of
R. Equations (32) and (35) can be transformed to functions of R and g through
K =R/g. So, this further refinement, or organization of the scatter accord-

ing to B, is left for a future effort.
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CONCLUSIONS

The relative phase shifts between the maximum velocity, the maximum
measured force, and the maximum acceleration show immediately whether a
wave and cylinder diameter arrangement will produce conditions that are
acceleration- (inertia) or velocity- (drag) dependent. Up to a K of at
least 25, the local wave force on a smooth vertical cylinder is heavily
dependent on the fluid acceleration.

A plot of the maximum force coefficient, Cu’ vs. K, the Keulegan-
Carpenter number, can be generated for all K (which implies for all R)
with waves at least as large as those produced in the Oregon State Uni-
versity Wave Research Laboratory, in conjunction with steady tow tests at
Reynolds number at least well beyond the critical value (up to about
7x10°).

Laboratory results are mostly limited from determining accurate values of
the phase of the force measurement, ¢¢, at higher K values. Data piots
of $ vs. K, up to a K of from 25 to 60, indicate that the force is still

strongly influenced by the acceleration (inertia) effects. Only for

roughened cylinders can laboratory results at OSU show dominant drag

conditions at higher X values.
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SUGGESTIONS FOR FUTURE STUDIES

The total in-line force acting on the VSMC12 cylinder can be determined
from existing measurement data. The phase of the total force should not
necessarily be the same as that of the local measured force because the
drag term in the Morison equation has its greatest influence in the
region between the wave trough and crest. The phases of the top and
bottom reactions (both were measured) can be determined analytically
using the local force measurement as a benchmark. Thus the measured and
analytical phases of the total force with respect to the local force can
be compared. It is possible that the total force will be more influenced
by the drag effects because the Keulegan-Carpenter number is higher in
the trough-to-crest region.

It is possible that the transverse force measurements can be organized
with respect to a maximum force coefficient concept in conjunction with
the phase of the transverse force. This can probably be accomplished
with spectrum analysis techniques. These measurements and analyses could
be compared to the 8 local pressure measurements for verification.
Maximum force coefficient and phase angle can be utilized for organizing
the random wave forces. The Keulegan-Carpenter number can be associated
with the frequency and spectrum amplitudes and the maximum force coeffi-
cient can be related to the velocity and force spectra. The Cu and & can
probably be well represented as functions of wave frequency. The
influence of nonlinearities may introduce problems, but a linear assump-
tion could be made as a first approximation. Values of C4 and Cp
obtained in this manner can be compared to values obtained by a conven-

tional wave-by-wave analysis.
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Fig.1.-Runup at the crest of a laboratory wave on
a 12.75-inch diameter smocth vertical cylinder.
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Fig. 2.-Local horizontal force, velocity and acceleration for 12.75"
smooth vertical cylinder. T = 3.7s, H=2.39 ft., K=6.3, R = 1.4x10".
%3 and ¢, . = acceleration phase shift from linear and stream function
theories, espectively.
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-4l N —-20

Fig. 3.-Local horizontal force, velocity and acceleration for 8.625"

SRC.02 vertical cylinder. T = 5.29s, H = 3.46 ft., K = 21.6, R =
1.5x10~. ¢La and ¢wa = acceleration phase shift from linear and

stream function theories, respectively.
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Fig.6.-Tow carriage arrangement for determining
CdS for the horizontal cylinders.
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Fig.10.- Phase in degrees of the acceleration peaks with respect to

the velocity peaks (negative values). Stream function
theory for periodic waves ( ) vs. data (-) (average of
7 waves). Water depth = 11.5 ft., depth below surface =
3.7 ft. (Data from 12.75-inch vertical cylinder tests of
April, 1983)
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